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ABSTRACT 
 

The purpose of the Automated Construction of Expeditionary Structures, Phase 3 

(ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the 

Dry Goods Delivery System (DGDS) structure to create an integrated and automated 

Materials Delivery System (MDS) for 3D printing structures with ordinary Portland 

cement (OPC) concrete.  ACES 3 is a prototype for 3-D printing barracks for soldiers 

in forward bases, here on Earth.  The LGDS supports ACES 3 by storing liquid 

materials, mixing recipe batches of liquid materials, and working with the Dry Goods 

Feed System (DGFS) previously developed for ACES 2, combining the materials that 

are eventually extruded out of the print nozzle. Automated Construction of 

Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of 

Engineers (USACE) and supported by NASA. The equivalent 3D printing system for 

construction in space is designated Additive Construction with Mobile Emplacement 

(ACME) by NASA. 
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INTRODUCTION 

This paper reviews the requirements, design, fabrication and verification & validation 

testing of an automated materials delivery system (MDS) terrestrial prototype that 

stores, transfers, and meters all materials required to make ordinary Portland cement 

(OPC) concrete. The MDS in combination with a mobile concrete mixing hopper, a 

concrete pump, a 3D print head robotic gantry positioning system, and a 3D print head 

comprises a system called the Continuous Feedstock Mixing Delivery Subsystem 

(CFDMS) which will 3D print free standing concrete structures on Earth as well as 

eventually on extra-terrestrial surfaces. The Earth based prototype version is currently 

being used by the United States Army Corps of Engineers (USACE) to automatically 

print barracks for their troops with some soldier support for deployment, monitoring 

and maintenance. This technology will allow the USACE to create housing for troops 

faster than currently possible, use less manpower, improve thermal efficiency and 

improve ballistic protection over the current wooden structures being used. NASA’s 

interest in this technology is to autonomously print habitats on the Moon and on Mars. 

 

 
Fig. 1. Concept for a robot engaged in 3D structural printing of a habitat on the Moon 

 

The NASA ACME project (Mueller, 2017) is a joint venture between NASA’s Space 

Technology Mission Directorate (STMD) Game Changing Development (GCD) 

Program and the United States Army Corps of Engineers (USACE) Engineer Research 

and Development Center – Construction Engineering Research Laboratory (ERDC-

CERL) with Marshall Space Flight Center and Kennedy Space Center as partners in 

project execution. Other partners included the Contour Crafting Corporation and the 

Pacific International Space Center for Exploration Systems (PISCES) as well as 

various engineering and fabrication support contractors. 

 

The purpose of the ACME project was to research and develop additive construction 

technologies at a relevant scale capable of achieving the goals of both USACE and 
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NASA. The project served NASA’s long-term goal of reducing launch mass for deep 

space human missions by enabling spaceflight crews to 3D print needed regolith 

structures on demand by using local materials, and transmitting building and other 

structural/civil engineering designs in three dimensional (3D) computer Aided Design 

(CAD) digital format from Earth to maximize system adaptability and mission 

assurance. 

 

Autonomous construction of free standing structures requires a set of sub-systems that 

communicate seamlessly with each other. These systems begin with mobility bases that 

autonomously deliver the required bulk granular and liquid material to the MDS 

hoppers. The MDS delivers metered amounts of dry and liquid materials to a mobile 

hopper where the material is mixed and delivered to a concrete pump.  The materials 

are then transferred via a hose to a 3D print head that is guided by the 3D Print Head 

Positioning Device (3D-PHPD). This paper describes the MDS system requirements, 

design, fabrication, and testing efforts.  

 

 

PROJECT OBJECTIVES (ACME) 
The combination of the objectives of both customers of the project, namely the USACE 

and NASA created a high degree of synergy of resources and cross-pollination of ideas 

and skills between the project team members and the stakeholders. Many objectives of 

USACE and NASA overlap in their philosophy while the differing objectives were 

such that they could be pursued independently without compromising the common 

approach adopted for the realization of the core hardware. This project synergy was 

built in the initial project design through extensive discussions between stakeholders, 

project managers and engineers.  

 

The USACE had the following objectives for construction of a B-hut in a forward base: 

• Reduce construction time 

• Reduce construction personnel requirements 

• Reduced logistics impacts associated with materials shipped, personnel, and 

 resources to sustain the structures and personnel 

• Decrease material shipped from “out of theater”  

• Improved energy performance of the envelope 

• Reduced sustainment (logistics) and operations/maintenance personnel 

• Reduce construction waste 

• Improved security during construction 

• Improved local population acceptance by mimicking local construction 

 

NASA had the following objectives for construction of a prototype habitat for 

feasibility and potential astronaut crew training: 

 

• First demonstration of additive construction using planetary analog materials 

• Provide a detailed analysis of materials for additive construction on different 

planets, including radiation shielding potential 



 

4 
 

• Advance the Technology Readiness Level (TRL) of additive construction 

hardware and processes to provide risk reduction and capabilities to future 

mission development programs 

• Provide the gateway to fabricating structures on demand in space with in-situ 

resources, reducing the need for sizeable structure up-mass 

• Provide a significant return on investment by enabling future NASA missions 

not feasible without the capability to manufacture structures in-situ and doing 

so with significant external leverage 

• Provide a first step towards evolving 3D autonomous additive construction 

(3DAAC) for use on Deep Space Missions 

• Demonstrate tele-operations to reduce costs of testing operations on Earth and 

show applicability to planetary surfaces 

 

SYSTEM ARCHITECTURE (ACME) 
The arrival of a human crew on Mars will be a major milestone on the path of human 

history. While it will represent a remarkable achievement in space transportation and 

logistics, it will also herald a new era defined by crews becoming more independent in 

their capabilities and decision-making. The multi-months duration and energy 

constraints of the journey between Earth and Mars are forcing this evolution toward 

self-sufficiency that will enable crews to adapt to changing circumstances and survive 

emergencies so far from Earth. 

 

Shelter is one of the primary needs of humans and the environment of planetary 

surfaces such as Mars and the Earth’s moon also requires protection for critical surface 

equipment on which human crews will rely; robotic transporter rovers, cranes, 

processing plants for consumable production are examples of hardware that could be 

damaged by large thermal swings, weather, solar particle events (SPEs), Galactic 

Cosmic Rays (GCR), meteorite bombardment, rocket engine blast ejecta and dust 

storms, potentially crippling the human mission. 

 

 
Fig. 2. Shelter from the deep space surface environment is the top goal 

 for ACME technology development 
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Several other types of structures are considered to be potential enabling elements in a 

Mars surface architecture for human missions. These include constructed landing/lift-

off pads for spacecraft, protective berms and walls around such landing/lift-off zones 

to protect other elements from ejecta generated by engine gas plumes. 

 

 
Fig. 3. Design model of ACES-3 automated additive construction system 

 

The robotic gantry system design that was developed for ACES-3 is shown in Figure 3 

and shows the concrete slurry print head positioning system elements. The actual 

hardware that was subsequently fabricated by NASA MSFC is shown in Figure 4. 

 

 
Fig. 4. ACES-3 Automated Additive Construction System: As-Built 
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In order to provide experience and inform the ACES-3 design a previous version, 

ACES-2 was designed and fabricated by ERDC-CERL. This prototype was effective 

in the 3D printing construction of a concrete Barracks (B)-Hut, the first habitat 

structure ever 3D printed with OPC concrete using 3/8 inch aggregate for higher 

strength concrete. The successful demonstration is shown in Figure 5, and has provided 

a good knowledge base of the ACES-3 iteration. 

 

 
Fig. 5. Completed ACES-2 3D Printed B-Hut Prototype Wall Structure 

 

MDS DEVELOPMENT 

The MDS consists of an integrated DGDS and LGDS that can automatically dispense 

the dry and liquid ingredients that make up the OPC specially formulated concrete 

recipe, which is suitable for 3D printing extrusion through a print head with appropriate 

rheology and curing characteristics. Seven (7) dry material hoppers, eight (8) auger 

feed systems, one (1) weigh hopper, and a control system make up what is designated 

as the Dry Goods Delivery System (DGDS). The system that delivers liquid 

commodities is called the Liquid Goods Delivery System (LGDS) and consists of five 

(5) storage tanks, associated valves, and a control system. These rae both integrated 

into a steel structural frame that is designed to be transportable (while empty) on a 

flatbed truck or a C-130 military transport aircraft. It weighs approximately 11,000 

pounds (4990 kg) when empty. 
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Figure 6. Showing the CFDMS System. 

 

The DGDS delivers all ingredients into a separate weigh hopper that has four (4) load 

cells which can accurately weigh the dispensed dry goods before augering them into a 

portable concrete mixing machine hopper. The dry goods in the weigh hopper are 

shown in Figure 7. The MDS is a critical part of the ACES-3 system; without a suitable 

OPC concrete slurry material, it cannot be pumped or deposited in stacked layers. In 

addition the work flow must be well integrated so that the timing is synchronized with 

the rest of the operations and the print head can never be starved of feedstock concrete. 
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Fig. 7. Dry goods in MDS Weigh Hopper 

 

DGDS HARDWARE DEVELOPMENT 

 

The DGDS was designed to be a mobile, field deployable machine and was completed 

in phase one of the project. The major components of the DGFS include the structure, 

hoppers, augers, and transportation/handling features. 

 

The structure of the DGDS consists of a framework of Hollow Structural Steel (HSS) 

to which the hopper panels and auger supports are welded. These sit on top of a W-

beam transport skid with forklift pockets, and tie down shackles. The structure with 

fully loaded hoppers was designed for transportation loads and factor of safety per 

NASA STD 5005D. The entire structure is coated with inorganic zinc paint for    

corrosion protection. The hoppers are designed to hold and store the 7 different 

dry materials. They are weather proof with sliding lids except for the Portland cement 

which has a water tight sealed top and fill-hatch. They were sized based on customer 

requirements to supply enough materials to complete 1/3 of a concrete printed B-hut. 

 

The hopper sides are sloped such that the dry materials flow to the auger openings in 

the bottom. Vibrators and air agitator are provided to aid in the movement of powdery 

and wet sand materials that do not naturally flow by gravity alone. Each hopper is 

labeled with a stencil on its side and lid with the material that it contains. 
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Fig. 9. DGDS Structure and Components 

 
There are 7 augers (6 material hopper, 1 WH) that move the materials from the hoppers 

into an external cement mixer. The 6 material augers are flexible spiral and rotate inside 

pipes. They deliver material in a pre-programed sequence to the weigh hopper (WH). 

The desired mixture is measured by weight by the WH load cells and once the recipe 

is complete the WH auger moves the material to the discharge tube. The auger motors 

are controlled by VFD (variable frequency drives) for precise stop/start and speed 

control. Each material has unique flow characteristics and the augers are tuned to move 

the materials in the most efficient way possible. Transport and handling is a major 

design feature of the MDS. There are numerous ways the machine can be moved and 

transported. There are forklift pockets and tie down shackles so it can be forklifted onto 

and secured on a flatbed truck. There is a hook latch and rear roles to be moved with 

an ARMY Palletized Load System (PLS) truck and trailer. The MDS can also be crane 

lifted and has lifting shackles as shown in the figures below. 

 

                                     
 

Fig. 10. Showing the front and back ends of the MDS. 
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LGDS HARDWARE DEVELOPMENT 
The second phase of the project was to add-on the Liquid Goods Delivery System 

(LGDS). This capability enables the MDS to deliver the complete mixture of materials 

needed to make the concrete. The LGDS consists of tanks, pumps, piping, and metering 

components to deliver up to 5 liquid commodities, but currently only 4 are used and 1 

is a spare for future use. The liquid commodities currently used are water, accelerator, 

rheology controller, and plasticizer. 

 

Each tank is positioned for ease of filling/draining and servicing. The additives tanks 

are housed in a weather proof heated enclosure to allow cold weather operation. Some 

of the additives cannot drop below 34°F so a thermostat controlled heater is provided 

to keep the additives within their required temperature range. Each tank is equipped 

with a level sensor and temperature sensor used by the control system to monitor the 

condition of the tanks and alert the user if refilling of heating is required. 

 

       
Fig. 11. Showing the LGDS storage tanks 

 

The LGDS has two types of pumps. For the 4 additives some of which are quite viscous 

and relatively small volumes are required then gear pumps are used. The water pump 

is a self-priming centrifugal impeller pump. 

 

                                     
Fig. 12. Showing the LGDS Pumps and Fluid Lines 
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The liquid goods are transferred through 

flexible piping and each pump has a 

pressure relief valve to protect the piping 

and components from over pressure. 

Each line has a flow meter and solenoid 

control valve connected to the control 

system to dispense precise amounts of 

liquids. The exit of the liquid pipes is 

next to the dry goods weigh hopper 

discharge where they can flow directly 

into the cement mixer as the dry good are 

dispensed. Check valves at the exit of 

each liquid pipe shut off the flow when 

the pumps are stopped. 

 

         

 

 

 

 

Fig. 13. Showing the LGDS Liquid Discharge Hoses Interface 

 

 

MDS SOFTWARE DEVELOPMENT 
 

A control system containing LabVIEW software that is integrated with the ACES2 

software is planned to be delivered with the ACME ACES3 LGDS.  This SRDS 

document contains software requirements, software design details, software 

requirement verification & validation plan, software requirement traceability and 

verification matrix, and software test plan for the ACES3 LabVIEW software package. 

 

SOFTWARE REQUIREMENTS: 

 

Requirement Description: 

LGDS subsystem shall have the capability of independent control. 

LGDS shall have local control with an interface for higher subsystem 
automation. 

LGDS controller shall provide data to a data recorder. 

LGDS shall meter liquids by volume, with error that will not exceed +/-3 
percent. 

LGDS shall be designed to deliver 5 discrete liquids to the mixer. 

LGDS shall have local control with an interface for higher subsystem 
automation.   

Table 2. Showing ACES III High Level Requirements 
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To reduce time and cost in the software design development and implementation of the 

LGDS, the LGDS software was developed to an Embedded User Interface (UI) feature 

on the cRIO-9030. The use of the Embedded UI feature grants the following 

capabilities: 

 Removes the need for a dedicated HMI, reducing overall system complexity 

and cost 

 Provides the ability to reuse and display the front panel of the Labview RT VI 

 Allows user event programming for front panel objects 

 

OPERATION: 

The MDS can be ran in manual mode, semi-automatic or automatic mode.  The manual, 

semi-automatic mode, and fully automatic mode. Fully-Auto allows the operator to 

create and select from several batch recipes. 

 

The Control tabs allow the user to operate the LGDS in Manual, Semi-Auto, and Fully-

Auto modes.  

 Manual Motor Control allows full control of all motors in the system 

 Semi-Auto allows the operator to add a commodity by volume in gallons for 

LGDS (by weight in pounds for DGFS). 

 Fully-Auto allows the operator to create and select from several batch recipes. 

 

Monitoring Tabs open to show all of the flow rates, volume and motor states.  cRIO 

health and status is available to the user as well. 

 

HMI – Front Panel 

The front panel of the HMI.vi will be used as the display on the Touch Panel Monitor.  

For the UI, tab control is the method that was used in DGFS to organize and display 

information that cannot fit on one screen, this will be continued as LGDS is developed 

and integrated.  The UI is primarily divided into two main sections – Control and 

Monitoring.   

HMI – Block Diagram 

The block diagram code consists of four asynchronous loops that communicate with 

each other using queues and Single Process RT Variables.  
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Figure 14. Showing the Acquisition Loop (Timed Loop that can be changed real time 

by the user) – Acquires the data using the 

 

 
Figure 15. Showing a block diagram of the LGDS software components, with the 

associated LabVIEW  
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MDS TESTING 

Testing was a necessary and integral part of the design and development process of this 

system especially the DGDS. Due to the nature of the dry granular materials, it is not 

possible to accurately model and calculate the flow and transport behavior of the 

materials, so testing was essential and was used to check the hopper geometry, size the 

motors and augers, and to validate the flow rate performance of each material. During 

initial concept designs, mock ups were built to test different concepts for feeding and 

weighing the dry materials. Concepts like vibratory slot feeders and open belt 

conveyors were tested. Also closed pipe with auger transport and continuous weighing 

of the material in the pipe was tested. Though a down select testing process the concepts 

were narrowed down to the final design. Hopper geometry was largely driven by the 

customer requirements for the volume of material and overall machine size, but tests 

with wooden mock ups to evaluate angle of repose and flow characteristics of different 

materials.  The augers were supplied by a commercial vendor specializing in auger 

manufacturing. We supplied the material flow rate and the hopper geometry (tube 

diameter, angle and length) requirements and the vendor conducted months of testing 

to select the best auger/motor combination for each material. Pea gravel (3/8 inch) was 

one of the most challenging materials to transfer with the auger due to its tendency to 

jam in the auger tube. For this reason a larger motor was selected for the gravel and a 

support bearing at the end of the auger was also provided. 

 

During functional check out and testing each commodity was functionally tested and 

adjustments were made to meet the flow requirements. For the sand (largest hoppers) 

the auger openings needed to be reduced in size to lower the overhead pressure on the 

auger. For the gravel a cover (hat) was added over the auger opening to reduce overhead 

pressure and eliminate auger binding. For the powdery materials (Portland cement, and 

other bulk materials) vibrators were added to eliminate rat-holing and bridging over 

the auger opening, and a vibration sequence was implemented in the control system to 

maintain continuous flow. For the weigh hopper a leveling routine was required to 

prevent materials from piling up under the auger discharges. All these corrections were 

discovered and implemented during testing and could not be predicted analytically 

during design. The hopper design and shape was driven by the packaging requirements 

for transportation and resulted in some design compromises regarding optimum hopper 

shape and flow characteristics. 

 

LESSONS LEARNED 
 

1. Could not flow damp or wet sand. The original design assumed the availability 

of dry sand which flows easily into the auger opening with gravity. But in field 

trials it was difficult to guarantee the dry sand, and damp/wet sand was often a 

problem. This was addressed in the upgrades phase of the project as discussed 

in the testing section. 

2. Horsepower calculations must be proven empirically using full scale hardware 

and actual feedstock materials. Auger design is very difficult to be done 
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analytically, so testing is very important in selecting/sizing the augers. We 

purchased a smaller motor for the WH based on analytical calculations, but 

needed to replace it with a motor three times its calculated size after testing the 

torque required for WH full of material. 

3. Mechanical vibration can aid or hinder flow of materials. Vibrators help some 

materials like the powdery commodities to enhance the flow, but too much 

vibration can cause compaction of the materials and jamming of the auger 

tubes. So vibration must be fine-tuned and used sparingly. Also with multiple 

hoppers in contact with each other vibration of one hopper can lead to 

compaction of the material in the adjacent hoppers so vibration must be used in 

limited bursts to get the desired results. 

4. Vibration and electromagnetic interference (EMI) creates noise on load cells. 

The entire machine depends on the accuracy of the load cells to measure the 

dispensed material. We added vibration isolators and adjusted the motor speed 

to slow down as we approached the target weight to reduce mechanical 

vibrations and improve accuracy. Also, we disabled vibration during 

measurement. Some EMI noise from other components like the air conditioner 

and power supplies in the control cabinet also contribute to noise on the load 

cells and special consideration was given to these to minimize the EMI noise. 

 

SYSTEM ENHANCEMENTS 

 

After delivery to the customer and field testing there were a number of lessons learned 

which lead to a number of upgrades being retrofitted to the system. Some of these 

include:  

 

1. Adding screens to the hopper openings to prevent foreign object debris such as 

large rocks, plastic bags, etc. from entering the hoppers and jamming the 

augers.  

 

2. Improved cover design for the auger motors to improve access for maintenance.  

 

3. Weigh hopper side extensions to prevent material from overflowing. Improved 

clean out flanges for the augers for easier access to the back of the augers to 

clean and clear jams.  

 

4. An enhanced air fluidizer system for the sand hoppers to allow the transfer of 

damp sand. A full size clear Lexan mockup is being built at KSC to study and 

solve the difficult problem of damp and transfer. The team is building a full 

scale Sand Hopper mock-up system consisting of a clear polycarbonate hopper, 

poly carbonate auger tube, auger motor/gearbox, pneumatic fluidizer, and 

control system. 
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